Generalized Isoperimetric FVPs Via Caputo Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Isoperimetric Problem

In this paper the diierential equations describing the minimal length curves satisfying the integral constraining relations of a general type are obtained. Moreover, an additional necessary condition supplementing Pontryagin maximum principle for the generalized isoperimetric problem is established. All results are illustrated by the analysis of generalized Dido's problem.

متن کامل

Generalized isoperimetric inequalities.

A new class of isoperimetric inequalities is described and illustrated.

متن کامل

A Generalized Affine Isoperimetric Inequality

A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

متن کامل

Isoperimetric Comparisons via Viscosity

Viscosity solutions are suitable notions in the study of nonlinear PDEs justified by estimates established via the maximum principle or the comparison principle. Here we prove that the isoperimetric profile functions of Riemannian manifolds with Ricci lower bound are viscosity supersolutions of some nonlinear differential equations. From these one can derive the isoperimetric inequalities of Lé...

متن کامل

Generalized GL, Caputo, and Riemann-Liouville derivatives for analytic functions

The formulations of Riemann-Liouville and Caputo derivatives in the complex plane are presented. Two versions corresponding to the whole or half plane. It is shown that they can be obtained from the Grünwald-Letnikov derivative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 2019

ISSN: 0083-4386,2084-3828

DOI: 10.4467/20843828am.19.003.12111